题目内容
【题目】如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为( )
![]()
A.
B.
C.
D.![]()
【答案】D.
【解析】
试题分析:
设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴
=BEDE,即
,∴AE=
x,在Rt△ADE中,由勾股定理可得
,即
,解得x=
,∴AE=3,DE=
,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=
,故选D.
![]()
练习册系列答案
相关题目
【题目】为了了解某地七年级男生的身高情况,从当地某学校选取了一个容量为60的样本,60名男生的身高(单位:cm)情况如下表所示(尚不完整),则表中a,b的值分别为( )
分组 | 147.5~157.5 | 157.5~167.5 | 167.5~177.5 | 177.5~187.5 |
频数 | 10 | 26 | a | |
百分比 | 30% | b |
A. 18,6 B. 30%,6 C. 18,10% D. 0.3,10%