题目内容
一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为( )
A. ﹣2 B. 1 C. 2 D. 0
对于二次函数y=2(x﹣1)2+2的图象,下列说法正确的是( )
A. 开口向下 B. 对称轴是直线x=﹣1
C. 顶点坐标是(1,2) D. 与x轴有两个交点.
生活中做拉面的过程就渗透着数学知识,一定体积的面团做成拉面,面条的总长度是面条粗细(横截面面积)反比例函数,其图象如图所示,则与之间的函数关系式为(写出自变量的取值范围)________.
直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.
(1)直接写出抛物线的解析式和点A,C,D的坐标;
(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.
①当∠DPE=∠CAD时,求t的值;
②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.
计算题
(1)解方程:x(x﹣3)﹣4(3﹣x)=0;
(2)利用配方法求抛物线y=﹣x2+4x﹣3的对称轴和顶点坐标.
已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是( )
A. 点火后9 s和点火后13 s的升空高度相同
B. 点火后24 s火箭落于地面
C. 点火后10 s的升空高度为139 m
D. 火箭升空的最大高度为145 m
如图,在同一直角坐标系中,二次函数y=x2-2x-3的图象与两坐标轴分别交于点A点 B和点C,一次函数的图象与抛物线交于B、C两点.
(1)将这个二次函数化为的形式为 。
(2)当自变量满足 时,两函数的函数值都随增大而增大。
(3)当自变量满足 时,一次函数值大于二次函数值。
(4)当自变量满足 时,两个函数的函数值的积小于0。
把抛物线y=-x2向下平移3个单位,则平移后的抛物线的解析式为 ( )
A. B. C. D.
下列结论正确的是( )
A. 直线比射线长
B. 过两点有且只有一条直线
C. 过三点一定能作三条直线
D. 一条直线就是一个平角