题目内容
A、BF=
| ||
| B、S△AFD=2S△EFB | ||
| C、四边形AECD是等腰梯形 | ||
| D、∠AEB=∠ADC |
分析:根据已知条件即可推出△BEF∽△DAF,推出A项为正确,已知条件可以推出四边形AECD为等腰梯形,推出C项正确,结合平行四边形的性质,可以推出D项正确,所以B项是错误的.
解答:解:∵平行四边形ABCD中,
∴△BEF∽△DAF,
∵E是BC的中点,
∴BF:FD=BE:AD,
∴BF=
DF,
故A项正确;
∵∠AEC=∠DCE,
∴四边形AECD为等腰梯形,
故C项正确;
∴∠AEB=∠ADC.
∵△BEF∽△DAF,BF=
DF,
∴S△AFD=4S△EFB,
故B项不正确;
∵∠AEB+∠AEC=180
∠ADC+∠C=180
而四边形AECD为等腰梯形
∴∠AEC=∠C
∴∠AEB=∠ADC
因此D项正确.
故选B.
∴△BEF∽△DAF,
∵E是BC的中点,
∴BF:FD=BE:AD,
∴BF=
| 1 |
| 2 |
故A项正确;
∵∠AEC=∠DCE,
∴四边形AECD为等腰梯形,
故C项正确;
∴∠AEB=∠ADC.
∵△BEF∽△DAF,BF=
| 1 |
| 2 |
∴S△AFD=4S△EFB,
故B项不正确;
∵∠AEB+∠AEC=180
∠ADC+∠C=180
而四边形AECD为等腰梯形
∴∠AEC=∠C
∴∠AEB=∠ADC
因此D项正确.
故选B.
点评:本题主要考查相似三角形的判定及性质、等腰梯形的判定、平行四边形的性质,解题的关键在于找到相似三角形.
练习册系列答案
相关题目
| 2 |
| 3 |
| 5 |
| A、AC⊥BD |
| B、四边形ABCD是菱形 |
| C、△ABO≌△CBO |
| D、AC=BD |