题目内容

精英家教网如图,在平行四边形ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是(  )
A、BF=
1
2
DF
B、S△AFD=2S△EFB
C、四边形AECD是等腰梯形
D、∠AEB=∠ADC
分析:根据已知条件即可推出△BEF∽△DAF,推出A项为正确,已知条件可以推出四边形AECD为等腰梯形,推出C项正确,结合平行四边形的性质,可以推出D项正确,所以B项是错误的.
解答:解:∵平行四边形ABCD中,
∴△BEF∽△DAF,
∵E是BC的中点,
∴BF:FD=BE:AD,
∴BF=
1
2
DF,
故A项正确;
∵∠AEC=∠DCE,
∴四边形AECD为等腰梯形,
故C项正确;
∴∠AEB=∠ADC.
∵△BEF∽△DAF,BF=
1
2
DF,
∴S△AFD=4S△EFB
故B项不正确;
∵∠AEB+∠AEC=180
∠ADC+∠C=180
而四边形AECD为等腰梯形
∴∠AEC=∠C
∴∠AEB=∠ADC
因此D项正确.
故选B.
点评:本题主要考查相似三角形的判定及性质、等腰梯形的判定、平行四边形的性质,解题的关键在于找到相似三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网