题目内容
已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
计算:2cos60°-+(5-π)°=____________.
已知a的两个平方根x、 y为4x-3y-28=0的一组解,求4a的算术平方根.
计算: 的七次方根是__________.
如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2=________.
如图,△ABC的面积为8cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为( )
A. 2 cm2 B. 3 cm2 C. 4 cm2 D. 5 cm2
3.2分=______秒;
2014年,锡东新城碧桂苑楼盘以均价每平方米8000元的均价对外销售.由于受周边地区及炒房的影响,该楼盘在二年内疯涨,至2016年该楼盘的均价为每平方米11520元.如果设每年的增长率相同.
(1)求平均每年增长的百分率;
(2)假设2017年该楼盘的均价仍然增长相同的百分率,有一工作了十年的李老师准备购买一套100平方米的住房,他持有现金80万元,可在银行贷款50万元,李老师的愿望能否实现?(房价按照均价计算,不考虑其它因素.)