题目内容
菱形ABCD中,AE垂直平分BC,垂足为E,AB=4cm.则对角线BD的长是______,菱形ABCD的面积是______.

∵四边形ABCD是菱形,
∴AB=BC=4cm,又∵AE垂直平分BC,
∴BE=EC=
×BC=
×4=2cm,
在Rt△ABE中,AB=4cm,BE=2cm
由勾股定理得AE=
=
=2
,
∴S菱形ABCD=BC•AE=4×2
=8
cm2∵AB=BC=4cm,
在Rt△AEC中,AE=2
cm,EC=2cm
∴AC=
=4,OC=
AC=2
在Rt△BCO中,BC=4cm,OC=2cm,
∴OB=
=
=2
对角线BD的长=2•OB=2×2
=4
cm.
故答案为4
;8
.
∴AB=BC=4cm,又∵AE垂直平分BC,
∴BE=EC=
| 1 |
| 2 |
| 1 |
| 2 |
在Rt△ABE中,AB=4cm,BE=2cm
由勾股定理得AE=
| AB2-BE2 |
| 42-22 |
| 3 |
∴S菱形ABCD=BC•AE=4×2
| 3 |
| 3 |
在Rt△AEC中,AE=2
| 3 |
∴AC=
(2
|
| 1 |
| 2 |
在Rt△BCO中,BC=4cm,OC=2cm,
∴OB=
| BC2-OC2 |
| 42-22 |
| 3 |
对角线BD的长=2•OB=2×2
| 3 |
| 3 |
故答案为4
| 3 |
| 3 |
练习册系列答案
相关题目