题目内容
如图,矩形ABCD内接于⊙O,AB=2,AD=3,点P是⊙O上任一点,则sin∠APB的值为 .
如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为( )
A.4 B.16 C.2 D.4
如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于 .
如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1、L2互称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.
(1)在图1中,抛物线:L1:y=﹣x2+4x﹣3与L2:y=a(x﹣4)2﹣3互为“伴随抛物线”,则点A的坐标为 ,a的值为 ;
(2)在图2中,已知抛物线L3:y=2x2﹣8x+4,它的“伴随抛物线”为L4,若L3与y轴交于点C,点C关于L3的对称轴对称的对称点为D,请求出以点D为顶点的L4的解析式;
(3)若抛物线y=a1(x﹣m)2+n的任意一条“伴随抛物线”的解析式为y=a2(x﹣h)2+k,请写出a1与a2的关系式,并说明理由.
如图,反比例函数y=的图象过点A(1,3),请根据下列条件试用无刻度的直尺分别在图1和图2中按要求画图.
(1)在图1中取一点B,使其坐标为(﹣1,﹣3);
(2)在图2中,在(1)中画图的基础上,画一个平行四边形ACBD.
如图,将一个正方形纸片(图1),切去四个角上同样大小的小正方形,翻折粘合成一个无盖的长方体(图2),若图1中原正方形纸片的边长为6,图2中长方体的长为a,高为b,则下列说法错误的是( ).
A.a<6
B.a+2b=6
C.a=2时,图2为正方体
D.长方体的所有棱长之和是个定值
已知函数C1:y=kx2+(﹣3k)x﹣4.
(1)求证:无论k为何值,函数图象与x轴总有交点?
(2)当k≠0时,(n﹣3,n﹣7)、(﹣n+1,n﹣7)是抛物线上的两个不同点,
①求抛物线的表达式;
②求n;
(3)当k≠0时,二次函数与x轴交于A,B两点,与y轴交于点C,是否存在实数k,使△ABC为等腰三角形?若存在,请求出实数k;若不存在,请说明理由?
一张圆形纸片,小芳进行了如下连续操作:
(1)将圆形纸片左右对折,折痕为AB,如图(2).
(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3).
(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4).
(4)连结AE、AF、BE、BF,如图(5).
经过以上操作,小芳得到了以下结论:
①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S四边形AEBF:S扇形BEMF=3:π.
以上结论正确的有( ).
A.1个 B.2个 C.3个 D.4个
如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为 .