题目内容
如图,在平行四边形ABCD中,点E.F分别在AB、CD上,AE=CF,连接AF,BF,DE,CE,分别交于H、G.
求证:(1)四边形AECF是平行四边形。(2)EF与GH互相平分。
下列说法正确的是( )
A. 正数和负数互为相反数
B. a的相反数是负数
C. 相反数等于它本身的数只有0
D. 的相反数是正数
如图,已知二次函数c为常数的图象经过点,点,顶点为点M,过点A作轴,交y轴于点D,交该二次函数图象于点B,连结BC.
求该二次函数的解析式及点M的坐标.
过该二次函数图象上一点P作y轴的平行线,交一边于点Q,是否存在点P,使得以点P、Q、C、O为顶点的四边形为平行四边形,若存在,求出P点坐标;若不存在,说明理由.
点N是射线CA上的动点,若点M、C、N所构成的三角形与相似,请直接写出所有点N的坐标直接写出结果,不必写解答过程.
如图,菱形ABCD中,点M,N在AC上,,,;若,则
A. 2 B. 3 C. 4 D. 5
的相反数是
A. 3 B. C. D.
如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是 cm.
如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=( )
A. 90°-α B. 90°+ α C. D. 360°-α
若一次函数与函数的图象关于X轴对称,且交点在X轴上,则这个函数的表达式为:______________________.
如图,直线y=x+b与抛物线y=x2+x+c相交于点A(6,8)与点B,P是线段AB的中点,D是抛物线上的一个动点,直线DP交x轴于点C.
(1)分别求出这两个函数的关系式,并写出点B,P的坐标.
(2)四边形ACBD能否成为平行四边形?若能,请求出线段OC的长度;若不能,请说明理由.
(3)当点D的坐标为(4,2)时,△APD是什么特殊三角形?请说明理由,并写出所有符合这一特殊性的点D的坐标.