题目内容
已知关于x的一元二次方程x2-mx-3=0…①.
(1)对于任意的实数m,判断方程①的根的情况,并说明理由.
(2)若x=-1是这个方程的一个根,求m的值和方程①的另一根.
解:(1)△=m2-4×1×(-3)=m2+12,
∵m2≥0,
∴△>0,
∴方程有两个不相等的实根;
(2)设方程另一根为x2,
∴-1•x2=-3,解得x2=3,
∵-1+3=m,
∴m=2.
分析:(1)计算判别式得到△=m2+12,由于m2≥0,则△>0,然后根据判别式的意义判断根的情况;
(2)设方程另一根为x2,根据根与系数的关系先利用两根之积求出x2,然后利用两根之和求出m.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
∵m2≥0,
∴△>0,
∴方程有两个不相等的实根;
(2)设方程另一根为x2,
∴-1•x2=-3,解得x2=3,
∵-1+3=m,
∴m=2.
分析:(1)计算判别式得到△=m2+12,由于m2≥0,则△>0,然后根据判别式的意义判断根的情况;
(2)设方程另一根为x2,根据根与系数的关系先利用两根之积求出x2,然后利用两根之和求出m.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
练习册系列答案
相关题目
已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2,
+
=1,则k的值是( )
| 1 |
| x1 |
| 1 |
| x2 |
| A、8 | B、-7 | C、6 | D、5 |