题目内容
如图,在Rt△ACB中,∠ACB=90°,CD⊥AB于D,则图中相似的三角形有
- A.4对
- B.3对
- C.2对
- D.1对
B
分析:根据条件可以得出∠1=∠A,∠2=∠B,就可以得出△ADC∽△CDB∽△ACB,就可以得出结论相似三角形的数量为3对.
解答:
解:∵CD⊥AB,
∴∠3=∠4=90°,
∴∠2+∠A=90°,∠1+∠B=90°.
∵∠ACB=90°,
∴∠1+∠2=90°,∠ACB=∠3=∠4.
∴∠1=∠A,∠2=∠B.
∴△ADC∽△CDB,△CDB∽△ACB,△ADC∽△ACB.
∴图中相似的三角形有3对.
故选B.
点评:本题考查了垂直的性质的性质的运用,直角三角形的性质的运用,相似三角形的判定的运用,解答时找到两组对应角相等是关键.
分析:根据条件可以得出∠1=∠A,∠2=∠B,就可以得出△ADC∽△CDB∽△ACB,就可以得出结论相似三角形的数量为3对.
解答:
∴∠3=∠4=90°,
∴∠2+∠A=90°,∠1+∠B=90°.
∵∠ACB=90°,
∴∠1+∠2=90°,∠ACB=∠3=∠4.
∴∠1=∠A,∠2=∠B.
∴△ADC∽△CDB,△CDB∽△ACB,△ADC∽△ACB.
∴图中相似的三角形有3对.
故选B.
点评:本题考查了垂直的性质的性质的运用,直角三角形的性质的运用,相似三角形的判定的运用,解答时找到两组对应角相等是关键.
练习册系列答案
相关题目