题目内容

如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=8,AD=7,则图中阴影部分的面积为________.

14
分析:由在△ABC中,AD⊥BC于D点,BD=CD,可得△ABC是等腰三角形,易证得△ABE≌△ACE,△BDF≌△CDF,继而可得S阴影=S△ABC,则可求得答案.
解答:解:∵在△ABC中,AD⊥BC,BD=CD,
∴AB=AC,∠ADB=∠ADC=90°,S△ABD=S△ACD
∴∠BAD=∠CAD,
在△ABE和△ACE中,

∴△ABE≌△ACE(SAS),
∴S△ABE=S△ACE
在△BDF和△CDF中,

∴△BDF≌△CDF(SAS),
∴S△BDF=S△CDF
∴S△BEF=S△CEF
∵S△ABC=BC•AD=×8×7=28,
∴S阴影=S△ABC=14.
故答案为:14.
点评:此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网