题目内容

如图,△ABC中,AB=AC,D为BC中点,E为AD上任意一点,过C作CF∥AB交BE的延长线于F,交AC于G,连接CE.下列结论中不正确的有


  1. A.
    AD平分∠BAC
  2. B.
    BE=CF
  3. C.
    BE=CE
  4. D.
    若BE=5,GE=4,则GF=数学公式
B
分析:根据等腰三角形三线合一的特点即可判断A、C选项是正确的;关于D选项,可通过证△ECG和△EFC相似,根据相似三角形得出的对应成比例线段,来判断其结论是否正确.
解答:∵△ABC中,AB=AC,D为BC中点,
∴AD是线段BC的垂直平分线,
∴AD平分∠BAC,BE=CE.
故A、C正确.
∵CF∥AB,
∴∠CFG=∠ABF;
∵∠ABE=∠ACE,
∴∠CFG=∠ACE=∠CFE;
∵∠CEG=∠FEC,
∴△ECG∽△EFC;
∴EC2=EG•EF;①
当BE=5,GE=4时,由①可得:EF====
∴GF=EF-GE=-4=
因此D正确.
故本题选B.
点评:本题主要考查了等腰三角形的性质、平行线的性质、相似三角形的判定和应用等知识,综合性强,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网