题目内容

精英家教网如图,过圆O内一点M的最长的弦长为10,最短的弦长为8,求OM的长.
分析:过M的最长弦应该是⊙O的直径,最短弦应该是和OM垂直的弦(设此弦为CD);可连接OM、OC,根据垂径定理可得出CM的长,再根据勾股定理即可求出OM的值.
解答:精英家教网解:连接OM交圆O于点B,延长MO交圆于点A,
过点M作弦CD⊥AB,连接OC
∵过圆O内一点M的最长的弦长为10,最短的弦长为8,(2分)
∴直径AB=10,CD=8
∵CD⊥AB
∴CM=MD=
1
2
CD=4
(4分)
在Rt△OMC中,OC=
1
2
AB=5

∴OM=
OC2-CM2
=3
.(6分)
点评:此题考查的是垂径定理及勾股定理的应用,解答此题的关键是理解过M点的最长弦和最短弦.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网