题目内容
一元二次方程一般形式:ax2+bx+c=0,(a≠0)两根记为x1,x2满足x1+x2=-
,x1x2=
,试用上述知识解决问题:设x1、x2是方程2x2-3x-1=0的两个实数根,求:
①x1+x1x2+x2
②
+
③3x12-3x1+x22.
| b |
| a |
| c |
| a |
①x1+x1x2+x2
②
| 1 |
| x1 |
| 1 |
| x2 |
③3x12-3x1+x22.
分析:由x1、x2是方程2x2-3x-1=0的两个实数根,利用根与系数的关系求出两根之和与两根之积,并将x=x1代入得到一个关系式,
①将所求式子第1、3项结合,把得出的两根之和与两根之积代入即可求出值;
②将所求式子通分并利用同分母分式的加法法则计算,把得出的两根之和与两根之积代入即可求出值;
③将所求式子第1项拆项后整体代换,并利用完全平方公式变形,把得出的两根之和与两根之积代入即可求出值.
①将所求式子第1、3项结合,把得出的两根之和与两根之积代入即可求出值;
②将所求式子通分并利用同分母分式的加法法则计算,把得出的两根之和与两根之积代入即可求出值;
③将所求式子第1项拆项后整体代换,并利用完全平方公式变形,把得出的两根之和与两根之积代入即可求出值.
解答:解:∵x1、x2是方程2x2-3x-1=0的两个实数根,
∴x1+x2=
,x1x2=-
,2x12-3x1=1,
①x1+x1x2+x2=(x1+x2)+x1x2=
-
=1;
②
+
=
=
=-3;
③3x12-3x1+x22=2x12-3x1+x12+x22=1+(x1+x2)2-2x1x2=1+
-(-1)=4
.
∴x1+x2=
| 3 |
| 2 |
| 1 |
| 2 |
①x1+x1x2+x2=(x1+x2)+x1x2=
| 3 |
| 2 |
| 1 |
| 2 |
②
| 1 |
| x1 |
| 1 |
| x2 |
| x1+x2 |
| x1x2 |
| ||
-
|
③3x12-3x1+x22=2x12-3x1+x12+x22=1+(x1+x2)2-2x1x2=1+
| 9 |
| 4 |
| 1 |
| 4 |
点评:此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),若方程有解时,设方程的两解分别为x1、x2,则有x1+x2=-
,x1x2=
.
| b |
| a |
| c |
| a |
练习册系列答案
相关题目