题目内容
写出命题“内错角相等”的逆命题_____.
如图,一次函数的图象与反比例函数(为常数,且)的图象都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;
(2)设一次函数的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.
下列各式从左到右的变形是因式分解的是( )
A.x2+2x+3=(x+1)2+2
B.(x+y)(x-y)=x2-y2
C.x2-xy+y2=(x-y)2
D.2x-2y=2(x-y)
如图,公路AB和公路CD在点P处交会,且∠APC=45°,点Q处有一所小学,PQ=,假设拖拉机行驶时,周围130m以内会受到噪声的影响,那么拖拉机在公路AB上沿PA方向行驶时,学校是否会受到噪声影响?请说明理由;若受影响,已知拖拉机的速度为36km/h,那么学校受影响的时间为多少秒?
计算:
(1)
(2)3x2•(﹣2xy2)3÷xy.
如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A. ∠A=∠C B. AD=CB C. BE=DF D. AD∥BC
元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;
(1)贺年卡的零售价是多少?
(2)班里有多少学生?
如果分式的值是零,则x的取值是( )
A. x=1 B. x=﹣1 C. x=±1 D. x=0
有规律排列的一列数:2,4,6,8,10,12,…,它的每一项可用式子2n(n是正整数)来表示.那么有规律排列的一列数:-1,2,-4,7,-11,16,-22,29,….
(1)它的第10个数是多少?
(2)你认为它的第n项可用怎样的式子来表示?
(3)2018是不是这列数中的数?如果是,是第几个数?如果不是,请说明理由.