题目内容
【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交舡于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2) 求证:
;
(3)若AG=6,EG=2
,求BE的长.
![]()
【答案】(1)证明见解析;(2)证明见解析;(3)BE的长为
.
【解析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;
(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=
GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FOAF,于是可得到GE、AF、FG的数量关系;
(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.
解:(1)证明:∵GE∥DF,
∴∠EGF=∠DFG.
∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG.
∴GD=DF.
∴DG=GE=DF=EF.
∴四边形EFDG为菱形.
(2)EG2=
GFAF.
理由:如图1所示:连接DE,交AF于点O.
![]()
∵四边形EFDG为菱形,
∴GF⊥DE,OG=OF=
GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
∴△DOF∽△ADF.
∴
,即DF2=FOAF.
∵FO=
GF,DF=EG,
∴EG2=
GFAF.
(3)如图2所示:过点G作GH⊥DC,垂足为H.
![]()
∵EG2=
GFAF,AG=6,EG=2
,
∴20=
FG(FG+6),整理得:FG2+6FG﹣40=0.
解得:FG=4,FG=﹣10(舍去).
∵DF=GE=2
,AF=10,
∴AD=
=4
.
∵GH⊥DC,AD⊥DC,
∴GH∥AD.
∴△FGH∽△FAD.
∴
,即
=
.
∴GH=
.
∴BE=AD﹣GH=4
﹣
=
.
“点睛”本题考查的是四边形与三角形的综合应用,解题应用了矩形的性质,菱形的性质和判定、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.
【题目】(7分)某地政府急灾民之所需,立即组织12辆汽车,将A、B、C三种救灾物资共92吨一次性运往灾区,甲、乙、丙三种车型的汽车分别运载A、B、C三种物资,每辆车按运载量满装物资。假设装运A、B品种物资的车辆数分别为
、
,根据下表提供的信息解答下列问题:
车型 | 甲 | 乙 | 丙 |
汽车运载量(吨/辆) | 5 | 8 | 10 |
(1)装运C品种物资车辆数为 辆(用含
与
的代数式表示);
(2)试求A、B、C三种物资各几吨。