题目内容

精英家教网如图,AB为相交两圆⊙O1与⊙O的公切线,且O1在⊙O上,大圆⊙O的半径为4,则公切线AB的长的取值范围为
 
分析:此题可以把公切线AB转换到由两圆的半径差、圆心距组成的直角三角形中;根据勾股定理,用半径表示公切线AB的长,再结合两圆的位置关系与数量之间的联系,进行分析解答.
解答:精英家教网解:如图,设圆O1的半径为R,连接OA,O1B,OO1,作O1F⊥OA.
由四边形ABO1F是矩形,得AB=FO1;由勾股定理得,OO12=OF2+O1F2
即42=O1F2+(4-R)2
整理得,AB=O1F=
-R2+8R
=
-(R-4)2+16

由于两圆相交,则R的取值范围为:0<R<8,
∴0<AB≤4,且当R=4时,AB=4.
点评:本题综合利用了切线的性质、勾股定理以及两圆的位置关系与数量之间的联系进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网