题目内容
【题目】小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.![]()
(1)求AD的长.
(2)求树长AB.
【答案】
(1)
解:过点A作AE⊥CB于点E,设AE=x,
在Rt△ACE中,∠C=30°,
∴CE=
x,
在Rt△ADE中,∠ADE=45°,
∴DE=AE=x,
∴CE﹣DE=10,即
x﹣x=10,
解得:x=5(
+1),
∴AD=
x=5
+5 ![]()
答:AD的长为(5
+5
)米
![]()
(2)
解:由(1)可得AC=2AE=(10
+10)米,
过点B作BF⊥AC于点F,
∵∠1=75°,∠C=30°,
∴∠CAB=45°,
设BF=y,
在Rt△CBF中,CF=
BF=
y,
在Rt△BFA中,AF=BF=y,
∴
y+y=(10
+10),
解得:y=10,
在Rt△ABF中,AB=
=10
米.
答:树高AB的长度为10
米.
![]()
【解析】(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
【考点精析】利用关于仰角俯角问题对题目进行判断即可得到答案,需要熟知仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.
练习册系列答案
相关题目