题目内容
如图,已知二次函数与一次函数的图象相交于、两点,则关于的不等式的解集是________.
如图,以点为位似中心,作的一个位似三角形,,,的对应点分别为,,,与的比值为,若两个三角形的顶点及点均在如图所示的格点上,则的值和点的坐标分别为( )
A. 2,(2,?8) B. 4,(2,?8) C. 2,(2,?4) D. 2,(4,?4)
已知关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是_____.
(6分)如图,小芳和小丽想测量学校旗杆的高度,她们来到操场,小芳测得小丽身高1.6米,在阳光下的影子长度为2.4米,她想立刻测量旗杆的影长时,因旗杆靠近一教学楼,影子不全落在地面上,有一部分落在墙上,测得落在地面上影长为12米,留在墙上的影高为2米,求旗杆的高度.
如图,直线,另两条直线分别交,,于点,,及点,,,且,,,则________.
购买斤水果需元,购买一斤水果的单价与的关系式是( )
A. B. (为自然数)
C. (为整数) D. (为正整数)
问题背景:
如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是__________________;
探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
结论应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.
能力提高:
如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=5,CN=12,则MN的长为_________.(直接写出答案)
等腰三角形一腰上的高与另一腰所成的夹角为45°,则顶角的度数为__________.
在一个不透明的袋子中装有 红,绿,蓝种颜色的球共个,这些球除颜色外都相同,其中红球个,绿球个.任意摸出个球恰好为同色球的概率是________.