题目内容
SAS
,BE与AC的位置关系是平行
.分析:由于ED=AD,∠ADC=∠EDB,BD=CD,所以利用SAS可证△ADC≌△EDB,再利用全等三角形的性质,可知∠ACD=∠EBD,所以AC∥BE.
解答:证明:∵AD是△ABC的中线,
∴BD=CD,
又∵∠ADC=∠EDB,AD=ED,
∴△ADC≌△EDB (SAS)
∴∠ACD=∠EBD,
∴AC∥BE.
故填SAS,平行.
∴BD=CD,
又∵∠ADC=∠EDB,AD=ED,
∴△ADC≌△EDB (SAS)
∴∠ACD=∠EBD,
∴AC∥BE.
故填SAS,平行.
点评:本题利用了全等三角形的判定和性质、平行线的判定的知识.做题时要结合图形进行思考.
练习册系列答案
相关题目