题目内容
| 1 |
| 2 |
| 1 |
| 2 |
则当动点C到达An处时,运动的总路径的长为( )
分析:由直线直线l1:y=x+1可知,A(0,1),则B1纵坐标为1,代入直线l2:y=
x+
中,得B1(1,1),又A1、B1横坐标相等,可得A1(1,2),则AB1=1,A1B1=2-1=1,可判断△AA1B1为等腰直角三角形,利用平行线的性质,得△A1A2B2、△A2A3B3、…、都是等腰直角三角形,根据平行于x轴的直线上两点纵坐标相等,平行于y轴的直线上两点横坐标相等,及直线l1、l2的解析式,分别求AB1+A1B1,A1B2+A2B2的长,得出一般规律.
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:由直线直线l1:y=x+1可知,A(0,1),根据平行于x轴的直线上两点纵坐标相等,平行于y轴的直线上两点横坐标相等,及直线l1、l2的解析式可知,B1(1,1),AB1=1,
A1(1,2),A1B1=2-1=1,AB1+A1B1=2,
B2(3,2),A2(3,4),A1B2=3-1=2,A2B2=4-2=2,A1B2+A2B2=2+2=4=22,
…,
由此可得An-1Bn+AnBn=2n,
所以,当动点C到达An处时,运动的总路径的长为2+22+23+..+2n=2n+1-2,
故选D.
A1(1,2),A1B1=2-1=1,AB1+A1B1=2,
B2(3,2),A2(3,4),A1B2=3-1=2,A2B2=4-2=2,A1B2+A2B2=2+2=4=22,
…,
由此可得An-1Bn+AnBn=2n,
所以,当动点C到达An处时,运动的总路径的长为2+22+23+..+2n=2n+1-2,
故选D.
点评:本题考查了一次函数的综合运用.关键是利用平行于x轴的直线上点的纵坐标相等,平行于y轴的直线上点的横坐标相等,得出点的坐标,判断等腰直角三角形,得出一般规律.
练习册系列答案
相关题目