题目内容
如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.
H7N9型禽流感是一种新型禽流感,于2013年3月底在上海和安徽两地率先发现.H7N9型禽流感是全球首次发现的新亚型流感病毒,其细胞的直径约为0.000000106m,用科学记数法表示这个数是( )
A. m B. m C. m D. m
甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.
(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;
(2)求出现平局的概率.
在平面直角坐标系中,规定:抛物线y=a(x﹣h)2+k的关联直线为y=a(x﹣h)+k.
例如:抛物线y=2(x+1)2﹣3的关联直线为y=2(x+1)﹣3,即y=2x﹣1.
(1)如图,对于抛物线y=﹣(x﹣1)2+3.
①该抛物线的顶点坐标为_____,关联直线为_____,该抛物线与其关联直线的交点坐标为_____和_____;
②点P是抛物线y=﹣(x﹣1)2+3上一点,过点P的直线PQ垂直于x轴,交抛物线y=﹣(x﹣1)2+3的关联直线于点Q.设点P的横坐标为m,线段PQ的长度为d(d>0),求当d随m的增大而减小时,d与m之间的函数关系式,并写出自变量m的取值范围.
(2)顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与其关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,直线AB与x轴交于点D,连结AC、BC.
①求△BCD的面积(用含a的代数式表示).
②当△ABC为钝角三角形时,直接写出a的取值范围.
在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.
将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为( )
A. (,﹣1) B. (1,﹣) C. (,﹣) D. (﹣, )
如图,一次函数分别交y轴、x 轴于A、B两点,抛物线过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于点M,交这个抛物线于点N.求当t 取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.
已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长为( )
A. 17 B. 22 C. 17或22 D. 无法确定
为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_____.