题目内容

如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于(  )

 

A.

25°

B.

30°

C.

35°

D.

40°

考点:

翻折变换(折叠问题).

分析:

先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CB′D的度数,再由三角形外角的性质即可得出结论.

解答:

解:∵在Rt△ACB中,∠ACB=90°,∠A=25°,

∴∠B=90°﹣25°=65°,

∵△CDB′由△CDB反折而成,

∴∠CB′D=∠B=65°,

∵∠CB′D是△AB′D的外角,

∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.

故选D.

点评:

本题考查的是图形的翻折变换及三角形外角的性质,熟知图形反折不变性的性质是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网