题目内容
(1)当时,求的值
(2)解方程.
为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:㎡),绘制了统计图,如图所示,下面有四个推断:
① 年用水量不超过180㎡的该市居民家庭按第一档水价交费
② 年用水量超过240㎡的该市居民家庭按第三档水价交费
③ 该市居民家庭年用水量的中位数在150-180之间
④ 该市居民家庭年用水量的平均数不超过180
正确的是( )
A.①③ B.①④ C.②③ D.②④
如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).
(1)只用直尺(没有刻度)和圆规按下列要求作图.
(要求:保留作图痕迹,不必写出作法)
Ⅰ)AC⊥y轴,垂足为C;
Ⅱ)连结AO,AB,设边AB,CO交点E.
(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.
下列命题中,逆命题是真命题的是( )
A.直角三角形的两锐角互余
B.对顶角相等
C.若两直线垂直,则两直线有交点
D.若x=1,则x2=1
甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.
函数y=中,自变量x的取值范围是 .
要使分式为零,那么x的值是( )
A.﹣2 B.2 C.±2 D.0
计算
(1)
(2)a﹣1﹣.
有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是( )
A. B. C. D.