题目内容
如图,分别过反比例函数
【答案】分析:根据反比例函数图象上点的坐标特征求得点P1、P2的纵坐标,由平行四边形对边平行且相等的性质求得点B1的纵坐标是y2+y1、B2的纵坐标是y3+y2、B3的纵坐标是y4+y3,据此可以推知点Bn的纵坐标是:yn+1+yn=
+
=
.
解答:解:∵点P1(1,y1),P2(2,y2)在反比例函数
的图象上,
∴y1=3,y2=
;
∴P1A1=y1=3;
又∵四边形A1P1B1P2,是平行四边形,
∴P1A1=B1P2=3,P1A1∥B1P2 ,
∴点B1的纵坐标是:y2+y1=
+3,即点B1的纵坐标是
;
同理求得,点B2的纵坐标是:y3+y2=1+
=
;
点B3的纵坐标是:y4+y3=
+1=
;
…
点Bn的纵坐标是:yn+1+yn=
+
=
;
故答案是:
.
点评:本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象.解答此题的关键是根据平行四边形的对边平行且相等的性质求得点Bn的纵坐标yn+1+yn.
解答:解:∵点P1(1,y1),P2(2,y2)在反比例函数
∴y1=3,y2=
∴P1A1=y1=3;
又∵四边形A1P1B1P2,是平行四边形,
∴P1A1=B1P2=3,P1A1∥B1P2 ,
∴点B1的纵坐标是:y2+y1=
同理求得,点B2的纵坐标是:y3+y2=1+
点B3的纵坐标是:y4+y3=
…
点Bn的纵坐标是:yn+1+yn=
故答案是:
点评:本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象.解答此题的关键是根据平行四边形的对边平行且相等的性质求得点Bn的纵坐标yn+1+yn.
练习册系列答案
相关题目