题目内容

如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

(1)求点B,C的坐标;

(2)判断△CDB的形状并说明理由;

(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

考点:

二次函数综合题.

分析:

(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标;

(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形;

(3)△COB沿x轴向右平移过程中,分两个阶段:

(I)当0<t≤时,如答图2所示,此时重叠部分为一个四边形;

(II)当<t<3时,如答图3所示,此时重叠部分为一个三角形.

解答:

解:(1)∵点A(﹣1,0)在抛物线y=﹣(x﹣1)2+c上,

∴0=﹣(﹣1﹣1)2+c,得c=4,

∴抛物线解析式为:y=﹣(x﹣1)2+4,

令x=0,得y=3,∴C(0,3);

令y=0,得x=﹣1或x=3,∴B(3,0).

(2)△CDB为直角三角形.理由如下:

由抛物线解析式,得顶点D的坐标为(1,4).

如答图1所示,过点D作DM⊥x轴于点M,则OM=1,DM=4,BM=OB﹣OM=2.

过点C作CN⊥DM于点N,则CN=1,DN=DM﹣MN=DM﹣OC=1.

在Rt△OBC中,由勾股定理得:BC===

在Rt△CND中,由勾股定理得:CD===

在Rt△BMD中,由勾股定理得:BD===

∵BC2+CD2=BD2

∴△CDB为直角三角形(勾股定理的逆定理).

(3)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),

解得k=﹣1,b=3,

∴y=﹣x+3,

直线QE是直线BC向右平移t个单位得到,

∴直线QE的解析式为:y=﹣(x﹣t)+3=﹣x+3+t;

设直线BD的解析式为y=mx+m,∵B(3,0),D(1,4),

解得:m=﹣2,n=6,

∴y=﹣2x+6.

连接CQ并延长,射线CQ交BD于点G,则G(,3).

在△COB向右平移的过程中:

(I)当0<t≤时,如答图2所示:

设PQ与BC交于点K,可得QK=CQ=t,PB=PK=3﹣t.

设QE与BD的交点为F,则:,解得,∴F(3﹣t,2t).

S=S△QPE﹣S△PBK﹣S△FBE=PE•PQ﹣PB•PK﹣BE•yF=×3×3﹣(3﹣t)2﹣t•2t=t2+3t;

(II)当<t<3时,如答图3所示:

设PQ分别与BC、BD交于点K、点J.

∵CQ=t,

∴KQ=t,PK=PB=3﹣t.

直线BD解析式为y=﹣2x+6,令x=t,得y=6﹣2t,

∴J(t,6﹣2t).

S=S△PBJ﹣S△PBK=PB•PJ﹣PB•PK=(3﹣t)(6﹣2t)﹣(3﹣t)2=t2﹣3t+

综上所述,S与t的函数关系式为:

S=

点评:

本题是运动型二次函数综合题,考查了二次函数的图象与性质、待定系数法、一次函数的图象与性质、勾股定理及其逆定理、图形面积计算等知识点.难点在于第(3)问,弄清图形运动过程是解题的先决条件,在计算图形面积时,要充分利用各种图形面积的和差关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网