题目内容
从,0,,5.13,9这5个数中随机抽取一个数,则抽到无理数的概率为( )
A. B. C. D.
如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为( )
A. B. C. D. 1
一只小猫在如图所示的矩形地板砖ABCD内自由地玩耍,点P是矩形的边CD上的一点,点E,F分别是PA,PB上的一点,连接EF,且EF∥AB,则这只小狗跑到△PEF内的概率是_____.
商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”。下列说法正确的是( )
A. 抽10次奖必有一次抽到一等奖
B. 抽一次不可能抽到一等奖
C. 抽10次也可能没有抽到一等奖
D. 抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖
随着科技的迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题.
(1)这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为________;
(2)将条形统计图补充完整;
(3)该校共有2500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
(4)某天甲、乙两名同学都想从“微信”“QQ”“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.
如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是( )
A. (2,7) B. (3,7) C. (3,8) D. (4,8)
在矩形中,,,点是边上一点(不与、重合),以点为圆心,为半径作,如果与外切,那么的半径的取值范围是_______.
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣ ),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求m的值.