题目内容
从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的时间大约为( )
A.1小时~2小时 B.2小时~3小时
C.3小时~4小时 D.2小时~4小时
下列图案中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
下列命题中,真命题的个数有( )
①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;
③一组对边平行,另一组对边相等的四边形是平行四边形.
A. 3个 B. 2个 C. 1个 D. 0个
已知x=3是方程—2=x—1的解,那么不等式(2—)x<的解集是______.
某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ).
A. 5千米 B. 7千米 C. 8千米 D. 15千米
如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).
(1)请直接写出B、C两点的坐标及抛物线的解析式;
(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE和Rt△OCD中的一个角相等?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,求t的值.
在Rt△ABC中,∠C=90°,且sin 30°=,sin 45°=,sin 60°=,cos 30°=,cos 45°=,cos 60°=;观察上述等式,当∠A与∠B互余时,请写出∠A的正弦函数值与∠B的余弦函数值之间的关系:______________.
在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:
在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件?
(1) 随机从第一个布袋中摸出一个玻璃球,该球是黄色、绿色或红色的;
(2) 随机的从第二个布袋中摸出两个玻璃球,两个球中至少有一个不是绿色的;
(3) 随机的从第三个布袋中摸出一个玻璃球,该球是红色的;
(4)随机的从第一个布袋中和第二个布袋中各摸出一个玻璃球,两个球的颜色一致.
下列图形中,不是轴对称图形的是( )
A. A B. B C. C D. D