题目内容
【题目】如图,等边△ABC的边长为12cm,点P、Q分别是边BC、CA上的动点,点P、Q分别从顶点B、C同时出发,且它们的速度都为3cm/s.
(1)如图1,连接PQ,求经过多少秒后,△PCQ是直角三角形;
(2)如图2,连接AP、BQ交于点M,在点P、Q运动的过程中,∠AMQ的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.
![]()
【答案】(1)经过
秒或
秒,△PCQ是直角三角形(2)∠AMQ的大小不变
【解析】
(1)分两种情形分别求解即可解决问题;
(2)由△AB≌△BCQ(SAS),推出∠BAP=∠CBQ,可得∠AMQ=∠PAB+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°即可.
(1)设经过t秒后,△PCQ是直角三角形.
由题意:PC=(12﹣3t)cm,CQ=3t,
∵△ABC是等边三角形,
∴∠C=60°,
当∠PQC=90°时,∠QPC=30°,
∴PC=2CQ,
∴12﹣3t=6t,
解得t=
;
当∠QPC=90°时,∠PQC=30°,
∴CQ=2PC,
∴3t=2(12﹣3t),
解得t=
,
∴经过
秒或
秒,△PCQ是直角三角形;
(2)结论:∠AMQ的大小不变.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠C=60°,
∵点P,Q的速度相等,
∴BP=CQ,
在△ABP和△BCQ中,
,
∴△AB≌△BCQ(SAS),
∴∠BAP=∠CBQ,
∴∠AMQ=∠PAB+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°.
【题目】
年
月
日是我国第六个南京大屠杀难者国家公祭日,某校决定开展铭记历史珍爱和平”主题演讲比赛,其中八(1)班要从甲、乙两名参赛选手中择优推荐一人参加校级决赛,他们预赛阶段的各项得分如下表:
项目 选手 | 演讲内容 | 演讲技巧 | 仪表形象 |
甲 |
|
|
|
乙 |
|
|
|
(1)如果根据三项成绩的平均分确定推荐人选,请通过计算说明甲、乙两人谁会被推荐
(2)如果根据演讲内容、演讲技、巧仪表形象按
的比例确定成绩,请通过计算说明甲、乙两人谁会被推荐,并对另外一位同学提出合理的建议.