题目内容
【题目】关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.
(1)求m的取值范围;
(2)若m为正整数,求此方程的根.
【答案】
(1)解:根据题意得m≠0且△=(2m﹣3)2﹣4(m﹣1)≥0,
解得m≤
且m≠0;
(2)解:∵m为正整数,
∴m=1,
∴原方程变形为x2+x=0,解得x1=0,x2=﹣1
【解析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且△=(2m﹣3)2﹣4(m﹣1)≥0,然后求出两个不等式的公共部分即可;(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.
【考点精析】掌握求根公式是解答本题的根本,需要知道根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根.
练习册系列答案
相关题目