题目内容

如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PC=________,AQ:QC=________.

1:3    2:3
分析:根据平行四边形的性质知:AB=CD,则AM:CD=1:3,AN:CD=2:3;易证得△AMP∽△CDP,△ANQ∽△CDQ;进而可根据相似三角形的对应线段成比例求出AP、PC,AQ、QC的比例关系.
解答:∵四边形ABCD是平行四边形,
∴AB∥CD,且AB=CD;
∴△AMP∽△CDP,△ANQ∽△CDQ;
且AM:CD=1:3,AN:CD=2:3;
∴AP:PC=AM:CD=1:3,
AQ:QC=AN:CD=2:3.
点评:此题主要考查了平行四边形的性质以及相似三角形的判定和性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网