题目内容
有一个数值转换机,原理如下:
当输入的x=81时,输出的y= .
单项式的系数是( )
A、-3 B、3 C、5 D、-5
某商店举办促销活动,促销的方法是将原价x元的衣服以(x-10)元出售,则下列说法:
(1)原价减去10元后再打8折;
(2)原价打8折后再减去10元;
(3)原价减去10元后再打2折;
(4)原价打2折后再减去10元;
其中能正确表达该商店促销方法的应该是 .
勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,
求证:a2+b2=c2
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.
∵S四边形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a).
∴b2+ab=c2+a(b﹣a), ∴a2+b2=c2.
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠ABC=90°.
求证:a2+b2=c2.
证明:
在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体.一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是 分米.
将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( )
同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:
(1)=_______.
(2)同理表示数轴上有理数x所对应的点到-5和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得=7,这样的整数是_______.
(3)由以上探索猜想对于任何有理数x,是否有最小值?如果有,写出最小值;如果没有,说明理由.
若约定向北走8km记作+8km,那么向南走5km记作 ___ km.
已知如图,AD是的角平分线,DE⊥AB,DF⊥AC,垂足为E、F.
求证:AD垂直平分EF.