题目内容
如图,正三角形ABC内接于圆O,P是BC所对劣弧上一点,求证:PA=PB+PC.
根据旋转的性质知,PA=AD;△BAP≌△CAD,
∴CD=PB,
∵内接四边形的对角和为180°,
∴∠PCD=∠ACP+∠ACD=∠ACP+∠ABP=180°,
∴PA=PB+PC.
证法2:在AP上截取PQ,使PQ=PC.以A为顶点,作AD=AP,连接CD.如图所示:
∵∠PAB+∠PAC=∠DAC+∠PAC,
∴∠BAC=∠PAD,
又∵AD=AP,AB=AC,
∴△APD∽△ABC,
∴△PAD是等边三角形.
∴∠APD=60°,
则△PCQ是正三角形,
∴QC=PC=QP,
∴△BPC≌△AQC,
则BP=AQ,
∴PA=PB+PC.
分析:以A为顶点,将△ABP旋转至点B与点C重合.根据旋转的性质易知PA=AD,∠BAP=∠CAD;然后根据全等三角形的判定定理SAS知△BAP≌△CAD,再由全等三角形的性质(全等三角形的对应边相等)得,CD=PB;根据以上的条件可知PA=PB+PC.
点评:本题考查了旋转的性质、全等三角形的判定与性质、等边三角形的性质.解答本题借助于旋转的性质,构建了与△APB全等的△CAD.
练习册系列答案
相关题目
如图,正三角形ABC的边长为1cm,将线段AC绕点A顺时针旋转120°至AP1,形成扇形D1;将线段BP1绕点B顺时针旋转120°至BP2,形成扇形D2;将线段CP2绕点C顺时针旋转120°至CP3,形成扇形D3;将线段AP3绕点A顺时针旋转120°至AP4,形成扇形D4….设ln为扇形Dn的弧长(n=1,2,3…),回答下列问题:
(1)按照要求填表:
(2)根据上表所反映的规律,试估计n至少为何值时,扇形Dn的弧长能绕地球赤道一周(设地球赤道半径为6400km).
(1)按照要求填表:
| n | 1 | 2 | 3 | 4 |
| ln |