题目内容
如图,AB是半圆O的直径,点C在圆弧上,D是的中点,OD与AC相交于点E.求证:△ABC∽△COE.
如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则( )
A. x-y2=3 B. 2x-y2=9 C. 3x-y2=15 D. 4x-y2=21
如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影子CD等于2米,若树底部到墙的距离BC等于8米,则树高AB等于________米.
关于x的一元一次方程(k-5)x+1=6-5x的解为整数,请求出整数k所有可能的值.
如图①,P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫作△ABC的费马点.
(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.
①求证: △ABP∽△BCP;
②若PA=3,PC=4,求PB的长;
(2)如图②,已知锐角△ABC,分别以AB,AC为边向外作正△ABE和正△ACD,CE和BD相交于点P,连接AP.
①求∠CPD的度数;
②求证:点P为△ABC的费马点.
将一个矩形沿着一条对称轴翻折,如果所得到的矩形与这个矩形相似,那么我们就将这样的矩形定义为“白银矩形”.事实上,“白银矩形”在日常生活中随处可见,如:我们常见的A4纸就是一个“白银矩形”.请根据上述信息求A4纸的较长边与较短边的比值,这个比值是________.
如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A. (2,2),(3,2) B. (2,4),(3,1)
C. (2,2),(3,1) D. (3,1),(2,2)
定义运算“@”的运算法则为:x@y=xy﹣1,则(2@3)@4=______.
已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,
(1)求∠BPQ的度数.
(2)求证:BP=2PQ.