题目内容
如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°;
(1)求BD的长;
(2)求四边形ABCD的面积.
解:(1)∵∠A=90°,
∴△ABD为直角三角形,
则BD2=AB2+AD2=25,
解得:BD=5.
(2)∵BC=13cm,CD=12cm,BD=5cm,
∴BD2+CD2=BC2,
∴BD⊥CD,
故S四边形ABCD=S△ABD+S△BDC=
AB×AD+
BD×DC=6+30=36.
分析:(1)在Rt△ABD中,利用勾股定理可求出BD的长度;
(2)利用勾股定理的逆定理判断出△BDC为直角三角形,根据S四边形ABCD=S△ABD+S△BDC,即可得出答案.
点评:本题考查了勾股定理及勾股定理的逆定理,在求不规则图形的面积时,我们可以利用分解法,将不规则图形的面积转化为几个规则图形的面积之和.
∴△ABD为直角三角形,
则BD2=AB2+AD2=25,
解得:BD=5.
(2)∵BC=13cm,CD=12cm,BD=5cm,
∴BD2+CD2=BC2,
∴BD⊥CD,
故S四边形ABCD=S△ABD+S△BDC=
分析:(1)在Rt△ABD中,利用勾股定理可求出BD的长度;
(2)利用勾股定理的逆定理判断出△BDC为直角三角形,根据S四边形ABCD=S△ABD+S△BDC,即可得出答案.
点评:本题考查了勾股定理及勾股定理的逆定理,在求不规则图形的面积时,我们可以利用分解法,将不规则图形的面积转化为几个规则图形的面积之和.
练习册系列答案
相关题目