题目内容
(1)求CD的长;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)当∠DAQ=2∠BAC时,求CP的值.
分析:(1)由∠DBC=∠BAC,∠BCD=∠ACB,易得:△BDC∽△ABC,根据相似三角形的对应边成比例,即可求得CD的长;
(2)由BC=BD与∠DBC=∠BAC,∠BCD=∠ACB,可证得:∠ABC=∠ACB,则可求得:AC=AB=4;作辅助线:作DE⊥BC,垂足为点E,即可证得:DE∥AH,又由DE∥PQ,根据平行线分线段成比例定理,即可求得y关于x的函数解析式;
(3)首先求得AQ=AB=4,然后作AF⊥BQ,垂足为点F,即可求得QF与DF的值,由勾股定理即可求得CP的值.
(2)由BC=BD与∠DBC=∠BAC,∠BCD=∠ACB,可证得:∠ABC=∠ACB,则可求得:AC=AB=4;作辅助线:作DE⊥BC,垂足为点E,即可证得:DE∥AH,又由DE∥PQ,根据平行线分线段成比例定理,即可求得y关于x的函数解析式;
(3)首先求得AQ=AB=4,然后作AF⊥BQ,垂足为点F,即可求得QF与DF的值,由勾股定理即可求得CP的值.
解答:解:(1)∵∠DBC=∠BAC,∠BCD=∠ACB,
∴△BDC∽△ABC,
∴
=
,
∵AB=4,BC=BD=2,
∴CD=1;
(2)∵BC=BD,
∴∠BCD=∠BDC.
∵∠DBC=∠BAC,∠BCD=∠ACB,
∴∠ABC=∠BDC.
∴∠ABC=∠ACB.
∴AC=AB=4,
作AH⊥BC,垂足为点H.
∴BH=CH=1.
作DE⊥BC,垂足为点E,可得DE∥AH.
∴
=
,即
=
.
∴CE=
,BE=
.
又∵DE∥PQ
∴
=
,即
=
,
整理,得y=
x+
.
定义域为x>0.
(3)
∵∠DBC+∠DCB=∠DAQ+∠DQA,∠DCB=∠ABD+∠DBC,
∴2∠DBC+∠ABD=∠DAQ+∠DQA.
∵∠DAQ=2∠BAC,∠BAC=∠DBC,
∴∠ABD=∠DQA.
∴AQ=AB=4.
作AF⊥BQ,垂足为点F,可得QF=
,DF=
.
∴32-(
)2=42-(
)2.
解得y=
,
∴
x+
=
.
解得x=
,
即CP=
.
∴△BDC∽△ABC,
∴
| CD |
| BD |
| BC |
| AB |
∵AB=4,BC=BD=2,
∴CD=1;
(2)∵BC=BD,
∴∠BCD=∠BDC.
∵∠DBC=∠BAC,∠BCD=∠ACB,
∴∠ABC=∠BDC.
∴∠ABC=∠ACB.
∴AC=AB=4,
作AH⊥BC,垂足为点H.
∴BH=CH=1.
作DE⊥BC,垂足为点E,可得DE∥AH.
∴
| CE |
| CH |
| CD |
| CA |
| CE |
| 1 |
| 1 |
| 4 |
∴CE=
| 1 |
| 4 |
| 7 |
| 4 |
又∵DE∥PQ
∴
| DQ |
| BD |
| EP |
| BE |
| y |
| 2 |
x+
| ||
|
整理,得y=
| 8 |
| 7 |
| 2 |
| 7 |
定义域为x>0.
(3)
∵∠DBC+∠DCB=∠DAQ+∠DQA,∠DCB=∠ABD+∠DBC,
∴2∠DBC+∠ABD=∠DAQ+∠DQA.
∵∠DAQ=2∠BAC,∠BAC=∠DBC,
∴∠ABD=∠DQA.
∴AQ=AB=4.
作AF⊥BQ,垂足为点F,可得QF=
| y+2 |
| 2 |
| y-2 |
| 2 |
∴32-(
| y-2 |
| 2 |
| y+2 |
| 2 |
解得y=
| 7 |
| 2 |
∴
| 8 |
| 7 |
| 2 |
| 7 |
| 7 |
| 2 |
解得x=
| 45 |
| 16 |
即CP=
| 45 |
| 16 |
点评:此题考查了相似三角形的判定与性质,平行线分线段成比例定理等知识.此题综合性很强,难度较大,注意数形结合思想的应用.
练习册系列答案
相关题目