题目内容

如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.

   (1)求的值及这个二次函数的关系式;

(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;

(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

 


(1) ∵ 点A(3,4)在直线y=x+m上,∴ 4=3+m. ∴ m=1.

        设所求二次函数的关系式为y=a(x-1)2

        ∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,  ∴ 4=a(3-1)2, ∴ a=1.

∴ 所求二次函数的关系式为y=(x-1)2.    即y=x2-2x+1.

(2) 设P、E两点的纵坐标分别为yP和yE .

∴ PE=h=yP-yE  =(x+1)-(x2-2x+1) =-x2+3x.    即h=-x2+3x (0<x<3).

(3) 存在.

解法1:要使四边形DCEP是平行四边形,必需有PE=DC.

∵ 点D在直线y=x+1上,∴ 点D的坐标为(1,2),∴ -x2+3x=2 .

即x2-3x+2=0 .解之,得  x1=2,x2=1 (不合题意,舍去) 

∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形.

解法2:要使四边形DCEP是平行四边形,必需有BP∥CE.

设直线CE的函数关系式为y=x+b.∵ 直线CE 经过点C(1,0),

∴ 0=1+b,∴ b=-1 .∴ 直线CE的函数关系式为y=x-1 .

   得x2-3x+2=0. 

解之,得  x1=2,x2=1 (不合题意,舍去)

∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网