题目内容
计算:-a+3a=_________.
如图,已知菱形ABCD的边长为2cm,∠A=60°,点M从点A出发,以1cm/s的速度向点B运动,到B点停止,点N从点A同时出发,以2cm/s的速度经过点D向点C运动,到C点停止。则△AMN的面积y(cm2)与点M运动的时间x(s)的函数的图象大致是( )
A. B. C. D.
如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.
为节约能源,某市众多车主响应号召,将燃油汽车改装为天然气汽车.某日上午7:00-8:00, 燃气公司给该城西加气站的储气罐加气,8:00 加气站开始为前来的车辆加气. 储气罐内的天然气总量y(立方米)随加气时间x(时)的变化而变化.
(1)在7:00-8:00 范围内,y 随x的变化情况如图13 所示,求y 关于x 的函数解析式;
(2)在8:00-12:00 范围内,y 的变化情况如下表所示,请写出一个符合表格中数据的y 关于x 的函数解析式,依此函数解析式,判断上午9:05 到9:20 能否完成加气950 立方米的任务,并说明理由.
如图,在□ABCD 中,∠ABC 是锐角,M 是AD 边上一点, 且BM+MC=AB, BM 与CD 的延长线交于点E,把□ABCD沿直线CM 折叠,点B 恰与点E 重合.若AB 边上的一点P 满足P,B,C,M 在同一个圆上,设BC=a,则CP=_________. (用含a 的代数式表示)
下列各图中,OP 是∠MON 的平分线,点E,F,G 分别在射线OM,ON,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是( )
某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.
已知一元二次方程x2﹣8x+12=0的两个解恰好是等腰△ABC的底边长和腰长,则△ABC的周长为( )
A. 14 B. 10 C. 11 D. 14或10
菱形的两条对角线分别为10cm和24cm,则这个菱形的周长是 ______ cm,面积是 ______ cm2.