搜索
题目内容
在课外活动中,小明同学制作了如图的一些纸片各若干张,小明同学取出了A种纸片3张,B种纸片2张,C种纸片4张,D种纸片6张,那么他用这些纸片所拼出的图形的最大面积是多少呢?
试题答案
相关练习册答案
答案:
练习册系列答案
中考必备考点分类卷系列答案
新思维冲刺小升初达标总复习系列答案
课时练优选卷系列答案
金榜小状元系列答案
单元自测题同步达标测试卷系列答案
小考练兵场系列答案
创新设计高考总复习系列答案
魔法教程课本诠释与思维拓展训练系列答案
北京市小学毕业考试考试说明系列答案
晨读晚练系列答案
相关题目
在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.
原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.
小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.
小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60度.
小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.
请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
(1)写出原问题中DF与EF的数量关系;
(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,
你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.
在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流。
原问题:如图(1),已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F探究线段DF与EF的数量关系。
小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解;
小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°;
小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况,请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
(1)写出原问题中DF与EF的数量关系;
(2)如图(2),若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
(3)如图(3),若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明。
在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.
原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.
小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.
小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60度.
小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.
请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
(1)写出原问题中DF与EF的数量关系;
(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.
在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.
原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.
小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.
小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60度.
小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.
请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
(1)写出原问题中DF与EF的数量关系;
(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.
在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.
原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.
小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.
小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60度.
小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.
请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
(1)写出原问题中DF与EF的数量关系;
(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案