题目内容
把下列各式分解因式.
(1)(m+n)3+2m(m+n)2+m2(m+n);
(2)(a2+b2)2-4a2b2
(3)(m2-m)2+
(m2-m)+
.
(1)(m+n)3+2m(m+n)2+m2(m+n);
(2)(a2+b2)2-4a2b2
(3)(m2-m)2+
| 1 |
| 2 |
| 1 |
| 16 |
(1)(m+n)3+2m(m+n)2+m2(m+n)
=(m+n)[(m+n)2+2m(m+n)+m2]
=(m+n)(2m+n)2;
(2)(a2+b2)2-4a2b2
=(a2+b2)2-(2ab)2
=(a2+b2+2ab)(a2+b2-2ab)
=(a+b)2(a-b)2;
(3)(m2-m)2+
(m2-m)+
=(m2-m+
)2
=(m-
)4.
=(m+n)[(m+n)2+2m(m+n)+m2]
=(m+n)(2m+n)2;
(2)(a2+b2)2-4a2b2
=(a2+b2)2-(2ab)2
=(a2+b2+2ab)(a2+b2-2ab)
=(a+b)2(a-b)2;
(3)(m2-m)2+
| 1 |
| 2 |
| 1 |
| 16 |
=(m2-m+
| 1 |
| 4 |
=(m-
| 1 |
| 2 |
练习册系列答案
相关题目