题目内容
计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.
长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.
(1)写出所有的选购方案(用列表法或树状图);
(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?
下列四个图形中,既是轴对称图形又是中心对称图形的是( )
在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( )
A. B. C. D.
如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.
(1)求证:PA是⊙O的切线;
(2)若,AB=6,求sin∠ABD的值.
如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是( )
A.3 B.4 C.2 D.
下列等式成立的是( )
A.(a+4)(a﹣4)=a2﹣4 B.2a2﹣3a=﹣a C.a6÷a3=a2 D.(a2)3=a6
八边形的内角和等于 度.
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:EB=EC;
(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.