题目内容
已知一个菱形的周长是20 cm,两条对角线的比是4∶3,则这个菱形的面积是 cm2.
已知抛物线与轴的一个交点为,则代数式的值为
A.2009 B.2008 C.2007 D.2006
观察下列各等式:,,,…,根据你发现的规律计算:=________(n为正整数).
(本小题满分12分)如图,平面直角坐标系中,抛物线交轴于A、B两点(点B在点A的右侧),交轴于点C,以OC、OB为两边作矩形OBDC,CD交抛物线于G.
(1)求OC和OB的长;
(2)抛物线的对称轴在边OB(不包括O、B两点)上作平行移动,交轴于点E,交CD于点F,交BC于点M,交抛物线于点P.设OE =m,PM =h,求h与m的函数关系式,并求出PM的最大值;
(3)在(2)的情况下,连接PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△BEM相似?若存在,直接写出此时m的值,并直接判断此时△PCM的形状;若不存在,请说明理由.
(本题8分)市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:
(1)一等奖所占的百分比是___ _______.
(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整.
(3)获三等奖的学生有多少人?
江苏省的面积约为102600 km2,这个数据用科学记数法可表示为 km2.
不等式组的解集是( )
A. B. C. D.
分解因式:
如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,曲线(k>0)经过点D,交BC于点E.
(1)求曲线的解析式;
(2)求四边形ODBE的面积.