题目内容
如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y=图象上,则图中过点A的双曲线解析式是_____.
如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为( )
A. 24m B. 22m C. 20m D. 18m
如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为4,则图中阴影部分的面积是________.
在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.
(1)求上述抛物线的表达式;
(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;
(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D的坐标.
计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.
方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是( )
A. ﹣1<x0<0 B. 0<x0<1 C. 1<x0<2 D. 2<x0<3
如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于( )
A. 4 B. 6 C. 8 D. 12
如图,将△ABC绕点A旋转到△ADE的位置,使点D落到线段AB的垂直平分线上,则旋转角的度数为( )
A. 40° B. 50° C. 60° D. 70°
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣ ),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求m的值.