题目内容
设x1,x2,x3,x4,x5,x6,x7是自然数,且x1<x2<x3<x4<x5<x6<x7,x1+x2=x3,x2+x3=x4,x3+x4=x5,x4+x5=x6,x5+x6=x7,又x1+x2+x3+x4+x5+x6+x7=2010,那么x1+x2+x3的值最大是 。
236解析:
p;【解析】略
p;【解析】略
练习册系列答案
相关题目
设x1,x2,x3,…,x10的平均数为
,方差为s2,标准差为s,若s=0,则有( )
. |
| x |
A、
| ||
B、s2=0且
| ||
| C、x1=x2=…=x10 | ||
| D、x1=x2=…=x10=0 |
设x1,x2,x3,x4,x5这五个数的平均数是a,则x1-1,x2-1,x3-1,x4-1,x5-1的平均数是( )
| A、a-1 | ||
| B、a-5 | ||
C、
| ||
| D、a+1 |