题目内容

在矩形ABCD中,对角线AC,BD相交于点O,若AC=6cm,∠BOC=120°,则∠ACB=________,AB=________cm,BC=________cm.

30°    3    3
分析:根据矩形的对角线相等且互相平分可得OB=OC,再根据等腰三角形的两底角相等列式求出∠ACB,根据直角三角形30°角所对的直角边等于斜边的一半可得AB=AC,利用勾股定理列式求解即可得到BC的长度.
解答:解:在矩形ABCD中,OB=OC,
∵∠BOC=120°,
∴∠ACB=(180°-∠BOC)=×(180°-120°)=30°,
∴AB=AC=×6=3cm,
在Rt△ABC中,BC===3cm.
故答案为:30°;3;3
点评:本题考查了矩形的对角线相等且互相平分的性质,等腰三角形的性质,勾股定理和直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键,作出图形更形象直观.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网