题目内容
高一新生入学军训射击训练中,小张同学的射击成绩(单位:环)为:5、7、9、10、7,则这组数据的众数是 .
(9分)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.
(1)求抛物线的函数表达式;
(2)如图1,连接CB,以CB为边作CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且CBPQ的面积为30,求点P的坐标;
(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为 上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.
如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上,若线段AB=4 cm,则线段BC= cm
阅读材料:用配方法求最值.
已知,为非负实数,,,当且仅当“”时,等号成立.
示例:当时,求的最小值.
【解析】,当,即时,的最小值为6.
(1)尝试:当时,求的最小值.
(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,年的保养、维护费用总和为万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=)?最少年平均费用为多少万元?
解不等式组:.
如图,四边形ABCD是⊙O的内接四边形,若∠DAB=60°,则∠BCD的度数是( )
A.60° B.90° C.100° D.120°
定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”为(0,0)点有1个,即点O.
(1)“距离坐标”为(1,0)点有 个;
(2)如图2,若点M在过点O且与直线CD垂直的直线l上时,点M的“距离坐标”为(p,q),且∠BOD=120°.请画出图形,并直接写出p,q的关系式;
(3)如图3,点M的“距离坐标”为(1,),且∠AOB=30°,求OM的长.
分式有意义的条件是 .
(8分)先化简,再求值:,其中x=﹣1,y=2.