题目内容
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧
上一动点(不与A.C重合).
(1)求∠APC与∠ACD的度数;
(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.
(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.![]()
解:(1)连接AC,如图所示:![]()
∵AB=4,∴OA=OB=OC=
AB=2。
又∵AC=2,∴AC=OA=OC。∴△ACO为等边三角形。
∴∠AOC=∠ACO=∠OAC=60°,
∴∠APC=
∠AOC=30°。
又DC与圆O相切于点C,∴OC⊥DC。∴∠DCO=90°。
∴∠ACD=∠DCO﹣∠ACO=90°﹣60°=30°。
(2)连接PB,OP,
∵AB为直径,∠AOC=60°,∴∠COB=120°。
当点P移动到弧CB的中点时,∠COP=∠POB=60°。
∴△COP和△BOP都为等边三角形。∴AC=CP=OA=OP。
∴四边形AOPC为菱形。
(3)当点P与B重合时,△ABC与△APC重合,显然△ABC≌△APC。
当点P继续运动到CP经过圆心时,△ABC≌△CPA,理由为:
∵CP与AB都为圆O的直径,∴∠CAP=∠ACB=90°。
在Rt△ABC与Rt△CPA中,AB=CP,AC=AC
∴Rt△ABC≌Rt△CPA(HL)。
综上所述,当点P与B重合时和点P运动到CP经过圆心时,△ABC≌△CPA。
解析
练习册系列答案
相关题目