题目内容
如图,点G是△ABC的重心,GE∥BC,如果BC=12,那么线段GE的长为 .
(-2a3b4)3 计算结果是( )
A.-6a6b7 B.-8a27b64 C.-8a9b12 D.-6ab10
如图,已知点A是双曲线y=-在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第一象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k>0)上运动,则k的值是 .
如图,已知抛物线与x轴相交于A,B两点,并与直线交于B,C两点,其中点C是直线与y轴的交点,连接AC.
(1)求抛物线的解析式;
(2)证明:△ABC为直角三角形;
(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.
解方程:
分解因式: .
若等腰三角形的两边长为3和7,则该等腰三角形的周长为
A.10 B.13 C.17 D.13或17
把一副常用的三角板如图所示拼在一起,那么图中∠ABC= 。
如图,A(-4,),B(-1,2)是一次函数y=kx+b的图像与反比例函数(m≠0,m<0)的函数图像的两个交点,AC⊥x轴于点C,BD⊥y轴于点D
(1)根据函数图像直接回答问题:在第二象限内,当x取何值时,一次函数的值大于反比例函数的值?
(2)求一次函数的表达式及m的值;
(3)点P是线段AB上一点,连接PC,PD,若△PCA和△PBD的面积相等,求点P的坐标。