题目内容
一次函数(为常数,且).
(1)若点在一次函数的图象上,求的值;
(2)当时,函数有最大值2,请求出的值.
如图、在□ABCD中,AB=5,AD=3,AE平分∠DAB交BC的廷长线于点F,则CF=_________。
用4个完全相同的小正方体组成如左下图所示的立体图形,那么它的主视图是( )
如图是有关x的代数式的方阵,若第10行第2项的值为1034,则此时x的值为( )
A. 10 B. 1 C. 5 D. 2
如图,直线AB∥CD,∠A=70?,∠C=40?,则∠E等于( )
A.30° B. 40° C. 60° D. 70°
如图, Rt△ABC的斜边AB经过坐标原点,两直角边分别平行于坐标轴,点C在反比例函数 的图象上,若点A 的纵坐标为,若点B 的横坐标为﹣2,则k的值为 .
一个圆锥的底面半径为8cm,其侧面展开图的圆心角为240°,则此圆锥的侧面积为( )
A. B. C. D.
如图,给正五边形的顶点依次编号为1、2、3、4、5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”. 如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→l为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为 .
某中学库存若干套桌椅,准备修理后支援贫困山区学校。现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费。
(1)该中学库存多少套桌椅?
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理。你认为哪种方案省时又省钱?为什么?