题目内容
如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为( )
A.5.5 B.4 C.4.5 D.3
定义正整数m,n的运算:m△n=++++…+
(1)计算3△2的值为 ;运算“△”满足交换规律吗?回答: (填“是”或“否”)
(2)探究:计算2△10=++++…+的值.
为解决上面的问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系的几何图形结合起来,最终解决问题.
如图所示,第一次分割,把正方形的面积二等分,其中阴影部分的面积为;
第2此分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;依此类推,…
第10次分割,把二次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为﹣++…+,最后空白部分的面积是;根据第10次分割图可以得出计算结果:++++…+=1﹣.
进一步分析可得出,++++…+=
(3)已知n是正整数,计算4△n=+﹣+﹣…+的结果.
按指定方法解决问题:请仿照以上做法,只需画出第n次分割图并作标注,写出最终结果的推理步骤;或借用以上结论进行推理,写出必要的步骤.
已知整式x﹣的值为6,则2x2﹣5x+6的值为 .
如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(﹣3,2).请按要求分别完成下列各小题:
(1)把△ABC向下平移4个单位得到△A1B1C1,画出△A1B1C1,点A1的坐标是 ;
(2)画出△ABC关于y轴对称的△A2B2C2;点C2的坐标是 ;
(3)求△ABC的面积.
一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是 .
等腰三角形的一条边长为6,另一边长为13,则它的周长为( )
A.25 B.25或32 C.32 D.19
如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 (直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.
如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是( )
A.3 B.6 C.7 D.8
用火柴棍象如图这样搭图形,搭第n个图形需要 根火柴棍.