题目内容
等腰三角形的一个内角为120°,则这个等腰三角形的底角等于
- A.20°
- B.30°
- C.45°
- D.60°
B
分析:因为三角形的内角和为180°,所以120°只能为顶角,从而可求出底角.
解答:∵120°为三角形的顶角,
∴底角为:(180°-120°)÷2=30°.
故选B.
点评:本题考查等腰三角形的性质,等腰三角形的两个底角相等,从而可求出解.
分析:因为三角形的内角和为180°,所以120°只能为顶角,从而可求出底角.
解答:∵120°为三角形的顶角,
∴底角为:(180°-120°)÷2=30°.
故选B.
点评:本题考查等腰三角形的性质,等腰三角形的两个底角相等,从而可求出解.
练习册系列答案
相关题目
已知等腰三角形的一个内角等于50°,则该三角形的一个底角的余角是( )
| A、25° | B、40°或30° | C、25°或40° | D、50° |